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Atom Optics and Quantum Groups 
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It is shown that in atom optics physical systems arise which have close similarities 
to quantum group structures. A particular example for which an atomic operator 
provides a representation of the quantum group GLq(2, C) for q = - 1 is presented. 

1. ~ T R O D U C T I O N  

In the last decade considerable progress has been made in the field of 
atom optics (see, e.g., Adams et al., 1994, and references therein). During 
the same period a new algebraical structure called a quantum group has 
gained much interest in mathematical physics (Drinfel'd, 1987; Fadeev et 

al., 1988). Despite the huge amount of theoretical work concerned with this 
subject, there is, to the author's knowledge, only one application of this 
formalism to an experimentally accessible physical system. This is the 
description of  molecular vibration and rotation spectra with the aid of  a q- 
deformed Hamiltonian (Chang, 1995, and references therein). It is the purpose 
of this paper to argue that also in atom optics objects very similar to certain 
quantum groups naturally arise, and that in particular the special form of  the 
interaction between atoms and laser fields allows one to identify certain 
operators as members of  a special quantum group. 

An attempt to connect quantum groups and quantum optics was pre- 
viously done by Zhe (1992), who replaced ordinary photons by their q- 
deformed counterpart. Instead of introducing new q-deformed objects into 
physically established theories, it is the purpose of the present work to 
demonstrate that even nondeformed theories can show a quantum group 
structure. 
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2. ATOM OPTICS  

One of the main topics in atom optics is the influence of laser fields on 
the atomic center-of-mass motion. If the laser is nearly in resonance with an 
atomic transition it is often a very good approximation to take only two 
energy states, say t g) and l e), into consideration so that all operators are 
matrices with respect to the internal quantum states. The center-of-mass of 
motion is described by the position and momentum operators x and p. A 
typical example of such a system is a two-level atom moving in a standing 
laser wave, for which the Hamiltonian is given by (see, e.g., Audretsch and 
Marzlin, 1994) 

p2 h h ~ o  
H = ~ 1 - ~ A0. 3 -- --~--- cos (k 'x )  0.1 (1) 

M is the mass of the atom, 1 denotes the unit matrix in two dimensions, and 
0.i are the Pauli matrices. The quantity ~0  denotes the Rabi frequency, which 
is related to the laser field intensity, k is the wavevector of the laser. The 
detuning of the laser frequency tOL versus the atomic transition frequency 
tOeg is given by A := tOL -- tOeg. Spontaneous emission has been neglected. 

To work out the similarity between such systems and quantum groups 
it is instructive to consider the resonant case A = 0. In this case the Hamilto- 
nian matrix can be diagonalized to the form 

p2 h 
H = ~-~ 1 - ~ 1) 0 cos(k .x)  0"3 (2) 

In the interaction picture with respect to the kinetic energy the Hamilto- 
nian becomes 

H' = �88 eiSrt(e4k'xeitk'p/M + e-ik'Xe-itk'p/m)0"3 

= {hl~o cos (k ' x  + tk'plM)0"3 (3) 

where ~r  : =  hkZl(2M) is the recoil shift. In the derivation we have used, 
besides others, the relation 

exp(ik, x) exp(itk, p/M) = exp(-2i~rt)  exp(itk, p/M) exp(ik, x) (4) 

The occurrence of the expressions exp(ik, x) and exp(itk, p/M) in the time 
evolution operator is a general feature of plane-wave laser fields. While the 
first of these exponentials stems from the spatial variation of the monochro- 
matic laser wave, the second one is a consequence of  the Doppler shift of 
the laser's frequency in the atomic reference frame. Note that equation (4) 
provides a representation of the Weyl algebra (see, e.g., Barut and Racka, 
1977). 
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3. QUANTUM GROUPS 

A well-known example of a quantum group is the system of 2 • 2 
matrices M with 

ca  = qac ,  d c  = qcd ,  [a, d] = ( q - 1  _ q ) b c  

(q is a complex number). These relations define the quantum general linear 
group GLq(2, C). In general, quantum groups are noncommutative Hopf 
algebras which are derived from commutative ones by means of an algebra 
deformation. For our purposes it is sufficient to know that a Hopf algebra 

is a space with a multiplication m: ~ | ~ --> ~ and a comultiplication 
A: ~ --> ~s | ~ which is a multiplication in dual space [for details on 
quantum groups see Doebner e t  al.  (1990), for instance]. For a Hopf algebra, 
m and A must be compatible in the sense that 

[A(a), A(b)] = A([a, b]) Va, b ~ ~ (6) 

holds. In this equation the commutators are defined by using the multiplication 
m. This compatibility of multiplication m and comultiplication A is one of 
the essential features of a quantum group. In the example (5) the deformed 
algebra is the algebra generated by the matrix components a, b, c, and d and 
the multiplication m is defined by the commutation relations given in (5). 
The comultiplication A is related to the matrix multiplication and can be 
written in the form 

A(M) = M @ M  (7) 

For a single matrix component this reads A(a) = a | a + b | c and so on. 
In the limit q ---> I the original general linear group GL(2, C) with commuting 
matrix components is recovered. 

4. C O N N E C T I O N S  B E T W E E N  B O T H  FIELDS 

The idea that certain systems in atom optics may show the structure of 
a quantum group is based on two observations. The first is that in both fields 
noncommuting matrix components naturally arise; compare equations (5) and 
(1), for instance. This resemblance is of course not a special feature of atom 
optics, since operator-valued matrix components also occur in other fields, 
e.g., in the field equations for Dirac or Pauli spinors. 

The second similarity between atom optics and quantum groups is more 
characteristic than the first one. It is based on the commutators between the 
matrix components given in equation (5). It is typical for these commutators 
that the interchange of a and b, say, results in the multiplication with a 
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complex number q. But this is also a feature of the Weyl algebra of equation 
(4), which naturally arises in atom optics. The apparent similarity between 
both relations with q being replaced by exp(-2 i~r  t) is a further connection 
between atom optics and the quantum group GLq(2, C). z While the first 
observation was based on the matrix structure and therefore on the comultipli- 
cation A, the second observation is a statement about the commutators of  
the matrix components and therefore concerns the multiplication m. 

Although it now seems to be easy to construct an atomic operator which 
may be interpreted as a representation of  the quantum group GLq(2, C), this 
task turns out to be surprisingly difficult. The reason is that besides the 
operators which represent the Weyl algebra (4) there are a couple of other 
operators, like the kinetic energy, for instance, which have to be taken into 
account. Nevertheless, there is at least one example for which the correspon- 
dence can be established. It is provided by a simple one-dimensional model 
for a two-level atom with very high velocity in a running laser wave. The 
Hamiltonian can be deduced from equation (1) by replacing the kinetic energy 
by cp and the standing laser wave part cos(kx) by exp(ikx). After a unitary 
transformation with the operator O given by Oi~ = exp(ikx/2) = O~2 the 
H a m i l t o n i a n / / =  O§ becomes 

h 
~1 -~- "~ (OJegO" 3 - -  ~00"1) "~ cp l  (8) 

The time evolution operator (1 = exp(- i l l~h)  is not difficult to obtain from 
this expression. Setting S := exp[-it(toegcr3 - fl0crl)/2] (the precise form of 
S can be easily derived, but is unimportant in what follows), we can write 
the total evolution operator as 

[ r ~itoJLI2 Sl2eittoLI2eikx~ 
U = U O O  + "~- - i cp t lh l  'Jllt~ 

e ~Szle_i,o,L/2e_i~ S22e_ittoLi 2 } (9) 

TO demonstrate that the operator (9) is related to the quantum group GLq(2, C) 
at certain moments of  the time evolution, the matrix components of  equation 
(9) are denoted by a ,  13, ~, and ~ and are shown to fulfill 

13a = eotl3, ~/a = ~-lot~/, a~ = ~a (10) 

where ~ := exp(io~Lt). These relations agree with the commutation relations 

2 Besides this fact, the operators exp(ik, x) and exp(itk-p/M) may be of mathematical interest 
in themselves because relations like [sin(k.x + tk.plM), cos(k.x + tk.p/M)] = 0 and 
cos(k.x + tk. p/M) = exp(i~,t)[cos(k-x) cos(tk.p/M) - sin(k.x) sin(tk, p/M)] provide a 
kind of noncommutative trigonometry. 
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(5) if - q  = � 9  = 1. This is the case at times t, :=  n~rltoL, where n is an 
integer number. I f  n is even, we have �9 = 1 and all matrix elements commute. 
But for odd n the commutation relations (10) are nontrivial and provide a 
realization of the quantum group GLq(2, C) for q = - 1 in atom optics. 
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